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In this paper we study the problem of finding an exact ground state of a two- 
dimensional _ J  Ising spin glass on a square lattice with nearest neighbor inter- 
actions and periodic boundary conditions when there is a concentration p of 
negative bonds, with p ranging between 0.1 and 0.9. With our exact algorithm 
we can determine ground states of grids of sizes up to 50 x 50 in a moderate 
amount of computation time (up to 1 hr each) for several values ofp .  For the 
ground-state energy of an infinite spin-glass system with p =0.5 we estimate 
E ~  = -  1.4015_ 0.0008. We report on extensive computational tests based on 
more than 22,000 experiments. 
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1. I N T R O D U C T I O N  

The last 20 years has witnessed a great deal of work on spin glasses. 16" 13) 
Nevertheless, the description of the phase transition and the nature of the 
ordered state remain controversiaU s" io~ The starting point for most theore- 
tical work is the Edwards-Anderson (EA) model, whose Hamiltonian is 

H(co) = - ~  Juai~j (1) 
i , j  
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where the J,j are random interactions and the spins lie on a regular lattice. 
An important case is the short-range model with Ising spins ai. 

A widely studied model is the + J Ising spin glass in which the sign of 
each bond is random but its magnitude is fixed. In two dimensions, the __+ J 
spin glass with nearest neighbor interactions enters its spin glass phase only 
at zero temperature. ~ ~-) 

In this paper we deal with two-dimensional models at zero tem- 
perature. We consider Ising spins al = + 1 on an L • L lattice with periodic 
boundary conditions and nearest neighbor interactions. In this case, the 
total energy of the spin system is given by the Hamiltonian (1), with the 
sum restricted to pairs of nearest neighbor spins. Our goal is to compute 
an exact ground-state configuration of spin glasses when there is a concen- 
tration p of negative bonds. As p is increased from zero, one can observe 
a critical concentration p,. which marks the phase transition between ferro- 
and paramagnetism. Different publications give estimates for p,. that lie 
between 0.09 and 0.163) 2~ 

Since there are no partition functions in closed form that, given all inter- 
actions between the spins, yield a ground state, the only way to compute a 
ground state is using a numerical algorithm. However, the total number of 
states is 2 L • L, and so it is impossible, from a computational point of view, 
to find a ground state by just enumerating all possible states and computing 
the energy for each of them (unless L is small enough). In fact, Barahona ~ 
found a polynomial-time algorithm; however, his algorithm is also of high 
complexity and was never implemented, to the best of our knowledge. 

Ground-state energies at p = 0 . 5  have been calculated by several 
authors. Unfortunately, most of the methods proposed in the literature do 
not find the exact ground state, but an approximation for it. Such methods 
usually use Monte Carlo simulation ~8) and evolutionary ~~ ~ and genetic 
algorithms;~5, 16) in ref. 4 a gauge-invariant method is proposed. In ref. 17 
an exact integer method is proposed to find ground states for small systems. 

The branch-and-cut method we proposed and described in ref. 3, which 
computes an exact ground state by finding a cut of maximum weight in a 
weighted graph, is able to solve large samples. It is the same method we used 
to find ground states for two-dimensional Ising spin glasses with periodic 
boundary conditions and nearest neighbor interactions based on a Gaussian 
bond distribution and an exterior magnetic field. ~8~ With our method we 
can compute exact ground states of + J Ising spin glasses on square lattices 
of size up to L = 50 within 1 hr and up to L = 70 within 1 day of computa- 
tion time. We used p e {0.1, 0.3, 0.5, 0.7, 0.9}. Because of the moderate com- 
putation time, we can give results based on more than 22,000 samples. 

In the following section, we discuss the results we obtained for two- 
dimensional systems. 
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2. C O M P U T A T I O N A L  E X P E R I M E N T S  

Our computational  experiments were carried out on a SUN 
SPARCstation 10. The complete computer  code, except the linear 
programming routines, was written by us; to solve the linear programs we 
used the CPLEX Callable Library/71 

Our experiments were done on _ J Ising spin glasses on L • L square 
lattices with a concentration p of negative bonds, for a range of values of 
L up to 50. Indeed we can solve lattices of bigger size, say 70 x 70, but the 
running times for these systems are so high that we cannot run a suf- 
ficiently large number  of these systems to get statistically stable results. One 
out of the eight 70 • 70 samples we solved is shown in Fig. 4. To find this 
optimal configuration the program needed a little less than 16 hr. 6 

At the beginning we considered L up to 40 and p = 0.1, 0.3, 0.5, 0.7 and 
0.9. Note that, when L is not too small, the value of the ground-state 
energy per spin for p = 0.1 is very close to the value for p = 0.9; the same 
holds also for the cases p = 0.3 and p = 0.7 (see Fig. 1). This is not sur- 
prising, since a (random) spin glass with concentration p of negative inter- 
actions becomes (a random) one with a concentration 1 - p  when all 
couplings are multiplied by - 1 .  The following holds (and is proven in the 
appendix): 

Proposition 1. The ground-state energies of a spin glass system 
with a concentration p of negative interactions and the corresponding one 
with all couplings multiplied by - 1  [concentration ( 1 - p )  of negative 
interactions] are exactly the same if L is even and differ by at most 4L if 
L is odd. 

In other words, the deviations in the energy per spin are O(I /L) ,  i.e., 
negligible for bigger sizes; however, these differences are noticeable for 
smaller samples. 

Hence, for L greater than 40 we just considered values of p equal to 
0.3, 0.5, and 0.9. For  each L between 5 and 50, we did 1-20000/L 2-] runs for 
every value of p. Figure 1 shows the averages for the ground-state energy 
for the different values o f p  except for p = 0.5. When L is small the ground- 
state energy values for p = 0.1 and p = 0.9 show a very different behavior 
depending on whether L is odd or even; these differences are not as high 
for the other values ofp.  F o r p = 0 . 1  (or p =0.9)  a n d p  =0.3 ( o r p  =0.7)  we 
estimate the ground-state energies for infinite systems as E :~ 0.1.0.9 ~ - 1.62 
and Eo.~" 0.7 ~ - 1.41, respectively. 

An electronic version of each sample is available from the authors; e-mail: diehl@infor- 
matik.uni-koeln.de. 
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Fig. 1. Ground-state energy for different concentrations. 
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Fig. 2. Ground-state energy for p =0.5. 
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In Fig. 2 we show the ground-state energies with p = 0.5, which is the 
"classical" -t-J-spin glass. To make in particular the values for bigger lat- 
tices more accurate, we computed another 2000 ground states for the 
p = 0.5 case. The error bars show the probable error a/x/r~L, where N c is 
the number of computed ground states. With a fitting function of the form 

o ~  _ 9  o o _ _  _ _  E,,(L)=E,, + c L  -, we find E,, - - 1 . 4 0 2 2 + 0 . 0 0 0 3 ;  with a function of 
the form Ee(L) = E ~  + c exp(--aL) ,  we get E ~  = - 1.4007 + 0.0003. Both 
results agree with the result given in ref. 11. Note that L 2 is the volume of 
the system; see ref. 14 for a brief discussion about both fitting functions. 

In Fig. 3 the average CPU-times are shown. For  better orientation 
there is also the graph of a function proportional to Z 6 drawn as a straight 
line. Up to L = 50 the CPU-time can be approximated by this polynomial; 
for bigger systems the variance is very high. It is not surprising that the 
running time can be bounded by a polynomial (in this size range), since 
branching was nearly never necessary (99.53 % of the samples were solved 
in the root node), so the program behaves mostly like a cutting plane algo- 
rithm with polynomial time separation routines. 

Barahona and Titan tS) reported computational results on + J  spin- 
glass systems and published a certain 50 x 50 instance which took them 
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Fig. 3. CPU-t ime versus system size. 
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Fig. 4. Ground state of a sample with L = 70. Positive couplings are drawn as solid lines. 

about  17 hr CPU- t ime  on a M I P S  M-120 workstat ion using C P L E X  as an 
LP-solver. We solved this one in l 1 min. 

Gropengiesser  Itl~ used biologically motivated algori thms for spin 
glasses with p =0.5.  He approximated ground states up to grid sizes of  
24 x 24 which took  about  350 sec on a iPSC860 processor. Our  p rogram 
needed 17 sec on average to find an exact ground state for this sample 
size. 

3. C O N C L U S I O N S  

In this paper, we investigated exact ground-sta te  computa t ions  for _+ J 
Ising spin glasses on two-dimensional  square lattices with nearest neighbor  
interactions and periodic boundary  conditions. For  the ground-s ta te  energy 
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of an infinite spin-glass system with p = 0.5 we estimate E~:5 = -  1.4015 + 
0.0008. Since our approach is applicable also to three-dimensional systems, 
we plan to investigate them in the future. 

APPENDIX .  PROOF OF PROPOSIT ION 1 

In the proof we will use a result proven in ref. 9. For  an edge-weighted 
graph G = ( V, E, w) with node set V, edge set E, and weight w~, for each 
e e E  and a subset De_E, let w(D):=~2,,~D we and for a subset S_c V let 
d(S) := {(u, v ) e E [ u E S ,  vq~S} denote the cut induced by S. 

Theorem 1. ~9) Let G = ( V ,  E, w) be an arbitrary weighted graph; 
let d(S) denote an arbitrary cut of G. The weighted graph G~s)= (V, E, w') 
is the graph that is obtained by switching the weights of the graph G along 
the cut d(S) i.e., 

w , = { ~ j w , ,  if e~c~(S) 
if e r  

If Wc is the weight of a maximum cut in G, then the weight Wo~,s, of a 
maximum cut in Ga~s~ is given by 

Wc,,~.~, = Wc - w(6(S)) 

T h e o r e m  2. Let G = (V, E, w) be a toroidal grid graph with L x L 
nodes and weights w,, = _ 1 on the edges. Let G' = ( V, E, w') be the graph 
that is obtained by multiplying the weight of every edge in G by - 1 .  The 
weight Wo, of a maximum cut in G' is given by 

W a -  w(E) if L is even 
w~, 

l W a w ( E ) + A  with [A]~<2L if L i s o d d  

Proof. L is even. Since E is a cut in G, the graph G' can be obtained 
by switching along E. Applying Theorem 1 directly results in 

W o, = W o -- w(E) 

L is odd. Consider the graph G = ( ~', E, ~T,) which is obtained from G 
by adding one row and one column of nodes and edges (see Fig. 5). All 
new edges have weight 0. Because G is again a toroidal grid graph with an 
even L now, Theorem 1 can be applied to the graphs C and G' obtained 
from G by multiplying all edge weights by - 1 .  So we have 

We, = W e - w ( E )  (A1) 

because r?(E) = w(E). 
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G : : : : 

Fig. 5. Converting G into C and S into S. 

We can easily extend any S_~ V to ,~, where S_~ S _  ~' in order to 
obtain a cut in (~ of the same weight #(6(,~))= w(,~(S)) as the cut in G 
induced by S. Namely, let ~e V \ V b e  adjacent to the nodes u and v, where 
u, ve  V. (All but one node in V \ V  are of that kind.) Let O=(v, 2 )e /~ \E ,  
~ ' = ( u , ~ ) e E ' \ E ,  and e = ( u , v ) e E ,  such that ~(~)=w(e)  and ~(~ ' )=0 .  
Then let ~ S if and only if u E S, because then the edge ~ is in the cut 6(S) 
if and only if e e 6(S). The same reasoning applies to G' and r so we have 

W o <% We" and We, ~< We', (A2) 

Let O(g) with S__c_ P be a cut of maximum weight in G, i.e., We'= 1~,(6(~)). 
Then we can restrict ~ to S = S c ~  V in order to obtain a cut 6(S) in G 
whose weight is at least W e - 2 L  because there are 2L edges in E that are 
connected to nodes in ~'\ V and the edges connecting only nodes in V\V 
have all weight zero by construction. Since the value of this cut in G is in 
turn a lower bound for the value of an optimal cut in G, we obtain 

W~ >~ We" - 2L and Wc. >~ We, - 2L (A3) 

because the same holds for G' and G'. 
Combining (A1)-(A3), we have 

( A 2 )  
WG--w(E)  - -2L  <~ W e ' -  w(E) - 2 L  IA=l, We,,--2L 

( A 3 )  

<~ W o, 

( A 2 )  
~< We', ~A2 ~ We' -- w(E) 

( A 3 1  
W a - w ( E )  + 2 L  QED 

Since the energies of configurations in spin-glass systems represented 
by graphs G = ( V, E, w) and G' = ( V, E, w' ) are given by 

E =  - - 2 W  G + w(E) and E' = - 2 W  a, + w'(E) 
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respectively, ~81 and 

w'(E) = - w(E) 

the ground-state energies of a spin-glass system with concentration p of 
negative interaction and the corresponding one with all couplings multi- 
plied by - 1  [concentration (1 - p ) ]  are exactly the same if L is even and 
differ by at most 4L if L is odd. So the energy per spin difference is at most 
4L/L2=4/L for odd L. 
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